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LESSON 27 – DOPPLER’S EFFECT ON SPECTRA 
In this lesson, we’ll examine how Doppler techniques simplify the processing of some data while 
they make other analyses much more complicated. 
 
Reading: 

Stimson Ch. 16-17 
Problems/Questions:  

Work on Problem Set 4 
Objectives: 

27-1 Understand what a coherent and an incoherent pulse is. 
27-2 Understand the purpose of a Fourier transform. 
27-3 Know what is meant by a frequency spectrum. 
27-4 Understand how pulse duration affects the pulsed spectrum. 
27-5 Understand how the number of pulses affects the pulsed spectrum. 
27-6 Understand how pulse repetition frequency affects the pulsed spectrum. 

 

 
Last Time: Doppler shift 
   wave explanation 
   phasor explanation 
 
Today: Pulsed Spectra 
   Why a single frequency isn’t 
   Coherence 
   Pulse width effects 
   Pulse Repetition Frequency effects 
   Fourier Transforms 
Equations:  BWnn = 2/τ 
 
 

 
 
What is a typical radar 
frequency?  Plot this on A 
vs F as a spike at 10 GHz. 
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What is a typical returned frequency?  The same, more, or less?  Plot these 
on the same graph.  Discuss relative speeds of targets that caused the returns. 
What does this tell us? 
 

 
Return 1 is opening rapidly (v = 2vfighter).  Return 2 is barely opening.  
Return 3 is moderately closing (v = 1/2 vfighter).  Return 4 is ground clutter
 .  Return 5 has almost the same closure as the ground.  Return 6 has 
high closure, v = -vfighter 
 
 
Now, let me add a bit of confusion:  What if our “single frequency we are 
transmitting is now actually transmitted at two frequencies?  What would the 
return look like? 
(DRAW THIS IN TWO COLORS) 
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It’s easy to see with two colors which returns are associated with which 
transmitted signal, but what if they’re all the same color?  The radar doesn’t 
know which return is associated with which transmission! 

 
 
Why do I bring this up?  Because we NEVER transmit at a single frequency 
NO MATTER HOW HARD WE TRY!!! 
 
Show what the differences between infinite wave spectra and pulse spectra 
are. 

 
This pair of figures is an infinitely long (in time) sinusoidal wave oscillating 
at f0 = 10 GHz. 
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This pair of figures is a single pulse with a carrier frequency of f0 = 10 GHz 
and a pulse width of τ. 
 
Notice that MANY frequencies are necessary to generate the pulse. 
 
We’ll see that the null-to-null bandwidth (BWnn) is related to the pulse 
width, τ by the relation BWnn = 2/τ.  This says the shorter the pulse, the 
broader the frequency spectrum required to generate it. 
 

An example is that the 
University of Texas’ 
Femtosecond laser built by 
M. Downer has a lasing 
transition of 25meV , or 
4x10-21J, or 6x1012Hz or 
50,000 nm.  For reference, 
the wavelength of visible 
light is about 400 to 700 nm.   
Comparing these three 
values implies that we 
shouldn’t be able to see this 
laser. 
 
Show the slide of the 
spectrum from Serway, Fig 
24.13. 
 
Question: Can you see these 
pulses?  Answer:  YES!   
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Question: How? It is a very special laser with a pulse width of only 1x10-15 
sec.  Is that time short?  Compared to what?!!  The difference between the 
time of this pulse and a second is equivalent to the difference in size 
between a proton and a meter, or the difference in size of your palm and the 
solar system – this is a VERY short time! 
 
∆f = 2/τ = 2x1015 Hz => the top frequency of this laser pulse is 6x1012 Hz + 
1x1015 Hz = 1.006 x 1015 Hz = 300 nm. 
 

 
 

A typical radar pulse 
width is about 200 ns.  
How wide is this pulse 
in frequency? 10,000 
kHz!  How much was 
the typical Doppler 
shift?  100 kHz.  Our 
Doppler shifted return is 
now hidden in the 
spectrum of the 
transmitted signal. 
 

Obviously, since Doppler radars do work, this problem has been resolved (so 
to speak).  How?   
 
To understand this, we must understand the concept of coherence.  
Coherence means that the pulses look like they were cut from the same CW.  
For coherent pulses, there are many fewer frequency components. 
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Show slide of coherent vs. incoherent pulses.  Talk about how they are 
simple to generate with a continuously operating wave generator that is 
hooked intermittently to the transmitter. 
 

 
With an INFINITE string of coherent pulses, the spectrum is strikingly 
different. 

 

With a FINITE string of coherent pulses, the individual lines broaden as 
Linewidth = (2/N)fr, where N is the number of pulses and fr is the PRF. 
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So why does this happen?  Let’s look at Fourier Series. 
 
ANY (periodic) function may be approximated by adding together a set of 
sine and cosine waves.  Any function may be EXACTLY duplicated by 
adding up an INFINITE set of sine and cosine waves. 
 
Show CUPS Fourier demo for an arbitrary curve, a single pulse, a grating 
with different pulse widths. 
 

The Fourier equation is [ cos( ) sin( )]a n t b n tn n
n
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∞
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, where the an’s and bn’s 

are the amplitudes of the constituent frequencies.  This says that any 
function F(x) may be written as the sum of a series of sines and cosines with 
various amplitudes.  Actually figuring out what these amplitudes are is 
beyond the scope of this course, and you may have already done it in some 
of your math courses.  What I want you to know is that for any signal other 
than an INFINITE sine/cosine wave, the spectrum of this signal MUST 
contain multiple frequencies. 
 
The question still remains:  with multiple transmitted frequencies, how do 
we find the TRUE Doppler? 
 

 
 
We’ll examine this in the next lesson’s computer application. 
 
 
 


